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A quantum-mechanical treatment is used to calculate the magnetic-field dependence of sound, which is 
amplified by interaction with conduction electrons in the presence of crossed dc electric and magnetic fields. 
It is shown that oscillatory behavior as a function of the strength of the applied magnetic field occurs under 
conditions of amplification. The oscillations which occur in the amplification have an amplitude equal to 
the nonoscillatory part of the amplification for nontransverse orientations of sound-wave vector q and mag
netic field H, as long as there are electrons that have a component of drift velocity in the direction of q which 
is equal to the sound velocity Vs. The amplification occurs when the drift velocity in the crossed fields, V#, 
has a component in the direction of q which exceeds Vs. 

I. INTRODUCTION 

A GREAT deal of attention has been paid recently 
to the study of the amplification of sound waves 

via their interaction with conduction electrons.1""8 The 
previous treatments of this subject are valid only in the 
semiclassical case where the quantization of the electron 
orbits can be ignored. However, some of the early 
evidence for amplification effects in crossed electric and 
magnetic fields occurred at magnetic field strengths in 
the quantum limit.2 It is, therefore, necessary to have a 
valid quantum-mechanical treatment of the interaction 
of the sound waves with a gas of conduction electrons. 

The procedure used in this paper is that of the self-
consistent field method as described by Ehrenreich and 
Cohen9 and applied by Zyryanov10 and Quinn and 
Rodriguez11 to calculating the absorption of sound in the 
quantum limit. In Sec. II, we show how the calculation 
is carried out and we exhibit explicitly the matrix ele
ments that are of interest. In Sec. Il l , we apply the 
results of our calculations to the amplification of sound 
and in Sec. IV, we give a discussion of our results. 

II. DERIVATION OF THE CONDUCTIVITY TENSOR 

We shall treat the conduction electrons as a free 
electron gas of density No confined within a cubic 
box of side L0. This gas is in the presence of a magnetic 
field B and electric field € which are at right angles 
to each other. The sound wave of frequency GO and 
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wave vector q manifest itself by means of a self-
consistent field with scalar and vector potentials 
0i(r,/), Ai(r,/) ocexpp(q«r—oit)~]. In real materials, the 
sound wave will also interact with the electron gas by 
means of a deformation potential. For an extrinsic semi
conductor, the electron gas is neutralized by a positive 
background of the same density while in a semimetal, 
the electrons are neutralized by an equal number of 
holes. 

The electron current density induced by the self-
consistent field is obtained by taking the trace of the 
current-density operator and the single-particle density 
matrix. The density-matrix operator p must satisfy the 
equation of motion 

-i»(dp/dO = [ f l>] , (2.1) 

where H is the Hamiltonian of the system. We can 
separate the Hamiltonian into two parts : 

H^Ho+Hi, (2.2) 
where 

1 1 
# o = — (iV+iY)+—(Py+fno>cx¥-e&x (2.3) 

2m 2m 

is the Hamiltonian of the electrons in the crossed dc 
electric and magnetic fields and 

e C«u 
Hi= ( v Ai+ Ai- v)+«*i— q 

2c o) 
(2.4) 

is the part of the Hamiltonian that is of first order in 
the potentials of the self-consistent field. In (2.3), we 
have chosen our coordinate system such that the x axis 
lies along £, the z axis lies along B, and the y axis lies 
along the third direction of our orthogonal triad. The 
cyclotron frequency is ooc^eB/mc and v is the velocity 
operator for the Hamiltonian Ho. In (2.4), the last term 
arises from the deformation forces, C being the deforma
tion potential tensor, and u being the velocity field 
induced by the passage of the sound wave. 

The Hamiltonian Ho has stationary states charac-
522 



Q U A N T U M E F F E C T S I N A M P L I F I C A T I O N O F S O U N D 523 

terized by the wave functions and energy eigenvalues 

f(r) = L0~ V ^ + ^ ^ x - hky/fnwc+ VH/oic), (2.5a) 

Ekn= (n+^)hwc+(hkz)
2/2m 

+hkyVH-intVH
2, (2.5b) 

The current density induced by the passage of the 
sound wave is 

ji(r,/) = tr{jop
/p} :=iL<*»|e(v Ax) 

kn \ 7YIC I 

X8(r-x)<p+U.c.\kn), (2.8) where <j>n{oc) is a normalized harmonic oscillator wave 
function and VH=C8/B is the electron drift velocity 
in the crossed fields. The state of the electron is specified w h e r e H c d e s i g n a t e s the Hermitian conjugate of the 
by the quantum numbers kyy kz, and n. preceding operator, jop' is implicitly defined by the 

We can now solve (2.1) to first order mE1 by expand- s e c o n d e q u a l i t y i n (2>8)# T h e i n d u c e d c h a r g e d e n s i t y 
ing the operator p=po+pi, where p0 is the value of p in 
the absence of the sound wave. The equation of motion 
becomes 

-ih(dPl/dt) = [Ho,Pi]+[tf I,PO] (2.6) 

to first order in the self-consistent field. By taking 
matrix elements of (2.6) in the representaton (2.5), 
we find 

, , „ , x (fkn-fvn'Xk'n'lHilkn) 
<*V|pi|Aw) = lim , (2.7) 

5_>0 Ek>n>-Ekn-hu+ih8 

Ni(r,t) is obtained from a similar relation. 
The relation between the induced current and charge 

and the self-consistent field potentials are 

4irc\ 
W.A1+KU1+ 

i V i = -
4xc\ 

- K * - A I + ^ U I 

q*C«u 

q«C«u 

(2.9a) 

(2.9b) 

where fkn is the Fermi distribution evaluated at the 
energy ekn, and ekn is that part of (2.5b) which does where coP is the plasma frequency of the electrons. The 
not depend upon the electric field.12 symbols W, K, and R stand for 

and 

m Ukn-fvn'Wn' | VI kn)(k'n' | V | kn)* 
W=H— L , 

N hh'nn' Ek>n' — Ekn— ftoO + ihd 

mc Ukn-fk'n'Wn'lVlknXknle^lkn)* 
K = — E , 

N kk'nn' Ek>n> — Ekn—ha>-\-ih8 

R = ~- E 
J\ kk'nn1 

C/*n-/*'»0K*V|^"|*n)l2 

Ek'n' — Ekn—ftu + ifti 

The operator V which appears in (2.10a-c) is defined by 

(2.10a) 

(2.10b) 

(2.10c) 

(2.11) 

If we choose q to lie in the yz plane of our coordinate system, then the matrix elements of exp(iq-r) and V are 
given by the following equations: 

d 
(k'n'\ Vx\kn)==--8klf',ka+qMv,,ky+qyio}c Jn>n{qy), (2.12a) 

dqy 

(k'n' | Vy | kn) = 8kg' ,kZ+qZ8ky' ,ky+qy VH+(nf—n)— 
qy-

Jn'n{qy) 5 

<*V|7, 
h 

Z $kz' ,kz+qz8ky> ,ky\-qv (fe+^jAn'fe) : 

(2.12b) 

(2.12c) 
m 

{k'ri\ exp(iq-r) \kn)= 8ky ,kz+qs8ky> ,ky+qyJ'wn(qy). (2.12d) 

The symbol 8k'k is the Kronecker's delta function and Jn'n(qy) is the two-center integral of the harmonic oscillator 

12 The justification for using c&n in the argument of the Fermi distribution instead of Ekn is that the chemical potential changes in a 
way to cancel out the part of Ekn which depends on the electric field. See A. H. Kahn and H. P. R. Frederikse, in Solid State Physics, 
edited by F. Seitz and D. Turnbull (Academic Press Inc., New York, 1959), Vol. 9, p. 271. 
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wave functions defined by 
/.+» 

/

-f-OU 

dx <f>n>(x)(l>n(x— (hq/mcoc)). (2.13) 
-00 

A few of the useful mathematical properties of Jn'n(q) are given in the Appendix. Some of them have been used in 
transforming the matrix elements into the form given in (2.12). These mathematical relations can be used to 
verify the gauge invariance of (2.9). We find that the following relations hold: 

W . q - ( a > A ) K = 0 , K * . q - ( « A ) J ? = 0 . (2.14) 

When we rewrite (2.9a) in a gauge-invariant form, in terms of the self-consistent electromagnetic field induced 
by the sound wave we have 

y = a\E1~iq ) , (2.15) 
\ eoo / 

where 
ir=(copV4artw)W (2.16) 

is the conductivity tensor. 
For the components of the conductivity tensor, using (2.10) and (2.16) together with (2.5b), (2.12), and (2.14), 

we find 

mojc
2 (fkn~fk+Q,n+a)[.dJn+an(qy)/dqy']2] 

1 Z , (2.17a) 
4:iricol hNo kna oiCx)c—o)jjL-\-(hqz/m)(kz-\-^qz) 

Wp 2 W lu-(H*/m)(kz+hz)y(fkn-fk+Q,n+a)Jn+a,nKqy) , MS 

?yy = ; — £ . , (2.17b) 
4iriu qy

2hNo ^na auc—uix+(hqz/rn)(kz-\-^qz) 

op
2 m [co/z—auc~]2(fkn—fk+q>n+a)Jn+a,n

2(qy) 

iiriai qz
2hN0 kna ac0c—co/jL-±-(hqz/in)(kz-{-l5qz) 

?nuc to)—(hqz/m)(kz+iqz)2(fkn—fk+q,n+a)(dJn+a,n
2/dqy)(qy) 0)J 

0"%y Gy x Z-d 
87rajqyhNo kna aooc—o)jjL+(hqz/m)(kz+^qz) 

(2.17c) 

(2.l7d) 

wj,2 m [o)—(hqz/m)(kz+iqz)2(fkn—fk+q,n+a)(h/m)(kz+iq 
(Tyz = (rzy = X , , ( 2 . 1 7 e ) 

47ria)qzhNokna aa:c—^^+(hqz/m)(kz+iqz) 

cx)p
2 mooc h d 

CTxz— —CTzx— X) (fkn—fk+q,n+a) (&2+f<?z) Jn+a,n2(qy) , ( 2 . 1 7 f ) 
STTO) hNo kna m dqy 

where ju=l —q-Nn/Vs and q is a unit vector in the volume is 
direction of propagation. . 

III. THE ABSORPTION COEFFICIENT Q = i R e ) & + * » ) * * + * • * ' * ^ ~ ^ | > ^ ' 2 ) 

The quantity that is of interest experimentally in w h e r e ^ g u t g ̂ ^ ^ a s s o c i a t e d with 
studying the interaction between the sound wave and ^ ^ ^ a n d ^ ̂ ^ t h o s e a s s o d a t e d w i t h t h e 

the conduction electrons is the absorption coefficient a ^ ^ T h e s e l f _ c o n s i s t e n t field a r i s i f r o m t h e e l e c t r o n 

This coefficient gives the exponential change of sound ^ ^ c u r r e n t s ^ b e o b t a i n e d w M a x w e l P s 

intensity with distance. The absorption coefficient is . 7 1 3 , . 
the average power density transferred between the ^ 
sound wave and the electrons per unit energy flux, or je+3\=(47rA'co){(c/Fs)

2I —[(c /F s ) 2 +l ]gg}£i , (3.3) 

a= Q/\p | u |2Vs, (3.1) where I is the unit matrix. 
Using (3.2) and (3.3) together with (2.15), we can 

where p is the density of the material. 
In a semimetal, the net power transferred per unit « M. J. Harrison, Phys. Rev. 119, 1260 (1960). 
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FIG. 1. The rela
tionship between the 
coordinate systems 
(x,y,z) and (1,2,3) is 
shown. The system 
(x,y,z) is fixed by 
the directions of the 
fields 8 and B. The 
system (1,2,3) is 
fixed by the direction 
of propagation q. 

—"a 

calculate a fror a semimetal. For semimetals, the forces 
arising from the deformation potential dominate the 
electrostatic forces for sound frequencies greater than 
1 Mc/sec. I t is only when the deformation potential 
forces do dominate, that we have appreciable interaction 
between the sound wave and the electrons in a material 
with low carrier density.13 In the region where the 
deformation forces dominate the interaction, we find 

2N0m/ Cy 
af~ 

pVs 
( — ) ( - ) 
\mVsy \ccj 

Reo-i (3.4) 

where we have chosen the 1 direction of our coordinate 
system to lie along q and the subscript j denotes the 
direction of polarization of the wave. In deriving (3.4), 
we have assumed, for the sake of simplicity, that the 
masses and deformation potentials of the holes and 
electrons are equal. 

To calculate the absorption coefficient, we need only 
know the <rn component of the conductivity tensor. 
This component can be calculated by performing a 
transformation from the coordinate system of (2.17) to 
our new coordinate system as shown in Fig. 1. We find 
that 

co» mo) \Jkn Jk+q,n+a)Jn-\-atn \Qv) 
CTii = 

4:wi q2hNo kykzna ao)c—^fjL+(hqz/m)(kz+^qz) 
(3.5) 

The real part of cm can be evaluated by using the 
relation14 

1 1 
lim = P—\-ITT8(Z) , 
6-*0+ z+i8 z 

(3.6) 

where P(l/z) indicates that in any integration, the 
principal part of the integral is to be taken. 

14 P. M. Morse and H. Feshbach, Methods of Theoretical Physics 
(McGraw-Hill Book Company, Inc., New York, 1953), Vol. 1, 
p. 473. 

Using (3.4)-(3.6), we find the absorption coefficient is 

Ntfyn/ C\j \ 2 / Â  \ 2 /.,„2,1 

2PVi 
2 hNo kykzna 

hqz 

2s \Jkn Jk+q,n+a) 
s\mVs

2/ \o)p/ q' 

( Hz \ 
XJn+<x,J(qy)H ^c~COjH (kz+^qz) 1 . (3.7) 

V m / 

We shall now evaluate (3.7) explicitly for two different 
cases. In case A, we shall take the direction of propaga
tion to be transverse to the magnetic field while in case 
B, q will have a component in the direction of B. 

A, Propagation in a Transverse 
Magnetic Field qJ-B. 

In this situation we find that the absorption coeffi
cient can be written as 

Notn / Cu \ 2 coV m dfkn 

<*;= ( ) £ 
2pVs\mVs

2/ q2 No hykzna d<p 

XJn+a,n2{qy)K
aU>c — U>lx) , (3.8) 

where <p is the Fermi energy. We have expanded 
fkn—fk+q,n+a in the following fashion: 

fkn fk+q.n+ct— (<3Jkn/V]<p)\€kn €k+q, n+a) 

= hao)c(dfkn/dcp). (3.9) 

From (3.8), we can see that we have resonant absorption 
or amplification of sound, whenever cofx=accc. When 
M>0, the sound is attenuated and when fx<0, the sound 
is amplified. 

I t is interesting to note the form (3.8) takes in the 
semiclassical limit. In this case, we deal with high 
quantum numbers and we can replace the summation 
over n by an integration over 6 from 0 to %-ir, where 
w=wosin20 and n0= ip/fiwc—\. We can then replace 
Jn,n+ct(qy) by its asymptotic form for large15 n: 

lim Jn1n+a(qy)
:=Ja([2nfiqy2/mo)P[112). (3.10) 

tt->oo 

Here Ja(%) is the Bessel function of order a and argu
ment x. In this limit, (3.8) takes the form 

3Nom/ C\j \ 2 coju 

, \n 
• Z ga(x)B(accc—COM) , (3.11) 

2pVs \mVs2/ (qVF)2 a 

where VF is the Fermi velocity, x=gyFir/coc. and 

TT/2 

ga(x) = j dd sin0/a
2(# sin#). (3.12) 

This answer agrees with the results obtained by using 

15 A. Erdelye, W. Magnus, F. Oberhettinger, and F. G. Tricomi, 
in Higher Transcendental Functions, edited by A. Erdelyi (Mc
Graw-Hill Book Company, Inc., New York, 1953), Vol. 2, p. 199. 
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the Boltzmann equation in the limit of infinite relaxa
tion time.16 

In real semimetals, there is a finite relaxation time 
which limits the peak values of the attenuation and 
amplification. We can take account of collisions with 
impurities by adding a term ifi{p—ps)/r to the left side 
of the equation of motion of the density-matrix operator 
(2.6). The density matrix relaxes, in the presence of the 
sound wave, to an equilibrium distribution which is 
centered about the impurity velocity and which depends 
on the local value of the Fermi energy. I t is possible to 
expand ps about the Fermi equilibrium distribution p0. 
This procedure gives two correction terms. The first 
correction is equivalent to adding a fictitious electric 
field of magnitude mu/er to the true electric field. The 
second correction gives rise to a diffusion current which 
adds a term — RNieVs to (2.15), where R is the diffusion 
vector.11,16 There remains in the equation of motion of 
p a term ih(p—po)/T, which can be formally taken 
account of in the expressions for v and R by replacing 
co by co+vV. When all the corrections have been ac
counted for, we end up with an expression for the ab
sorption coefficient like (3.4), where an has been 
replaced by an effective conductivity crn

/; 

(T, l , = ( T I I / ( l - « ) i , (3.13) 

and 

3(7o(l — icor) 
0"II = 

2 (p 
1 (1 — icofir) 

(qiy- L 3 No 

x E 
(dfkn/d (p)Jn+a,n

2(q)' 

kykgna l-\-i(aO)c — O0/JL)T 

1 f 2 <f (dfjcn/d<p)Jn+a,n2(q)' 

* i = — 1 £ ; 

, (3.14a) 

(3.14b) 

In (3.14a-b), a0 is the dc conductivity and / is the 
electron mean-free path, I— VFT. 

Using (3.10) in (3.14a-b), we can find the limiting 
expressions for au and Ri in the semiclassical limit: 

3cr0(l — icor) 

(qiy 

X 1 — (1 — io)jjLr)^2 
ga(x) 

Ri l ~ ( l - i W ) £ -

« l+i(acoC '™co/i)r. 

a l-\-i(ao)c~~co/x)rJ 

, (3.15a) 

(3.15b) 

In the region of cyclotron resonance, i.e., co=acoc, 
#=(CO/W C ) (FV/F S )>£>1, and we obtain the following 

16 M. EL Cohen, M. J. Harrison, and W. A. Harrison, Phys. Rev. 
117, 937 (1960). 

for Reo-i/: 

Re<r„' = 
3op*/V. ©» Re coth7r-

(1 — ioofir) 
(3.16) 

In the region of geometric resonance, x~l, and we can 
usually also satisfy the condition |cocr/(l —icojur) 12^>1, 
so that we need keep only the a = 0 term in the summa
tion over a. Therefore, in this region we have 

Recr 
3<V/ v*\2 "A^gofaOCi—go(s)J 

4ir\VF) 
(3.17) 

We have a maximum value for the absorption coefficient 
when 

M = ± ( l - * o ( * ) ) / « r , (3.18) 

and this maximum value is 

OLj max = 

" PVS \mVj \ V, - ) 
cogoW. (3.19) 

The results (3.16)—(3.19) are the same as obtained pre
viously using a Boltzmann equation approach8 and are 
shown just for comparison. 

In going to the region where quantum effects 
are important, we shall consider the case where 
\o)cr/(l—icofjLT)\2^>l and %q2/2muc<<il. We can use the 
following limiting form for Jnn2(q)17' 

Jnn2(q) = l — (n+i)(hq2/mcoc), (3.20) 

using the expansion of the Laguerre polynomials. We 
now have 

cr0(l — tcor) <p hq2 dfkn 
cr„ = — E • ( » + £ ) , (3.21a) 

2(ql)2 No?no3ckykzn 0<p 

1 VVH 2<p ( 1 -WOT) hq2 

1 — ioourl-
i?l = ; — + -

-icOjUTi- Vs 3NQ 

dfkn 

mCCckykzn dip 

(3.21b) 

The summation over the quantum numbers kykzn can 
be performed using a method which has been described 
in detail by Wilson18: 

where 

dfkn No 

E —(»+*)=—U+JO, 
kykzn dip h(dc 

F^3^w'< 
kT/ho)c\

112 cos(27rf ip/huc-lir) 

Swc\ <p J sinh(27rV&7y/2coc) 

(3.22) 

(3.23) 

F is an oscillatory function of magnetic field, whose 
origin is the same as that of the de Haas-van Alphen 
oscillations of the magnetic susceptibility of semimetals. 

17 Ref. 15, p. 188. 
18 A. H. Wilson, The Theory of Metals (Cambridge University 

Press, New York, 1958), 2nd ed., pp. 160-168. 
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In this limit the absorption coefficient is 

2N0m/ Cu \ 2 W^T(O>/OOC¥(1+F) 

Pvs \mVs
2/ (UMr)2+^4(l+^)2 

(3.24) 

Therefore, for qJL-ff, we have a quantum oscillation of 
small amplitude superimposed on the ordinary semi-
classical absorption coefficient. We have a maximum in 
the absorption coefficient at fields such that 

1 x2 

/i=± (1+F) 
3 cor 

(3.25) 

at these fields, the absorption coefficient has the value 

&j m a x = ^ t I ~~ 
PVS \mVa

2> m- (3.26) 

which is the same as the maximum value obtained in the 
semiclassical case in the high-field limit. Thus, for 
propagation transverse to the magnetic field, there is no 
quantum correction to the absorption coefficient in the 
limit of infinite relaxation time. In all cases, we have 
amplification when ju<0. 

B. Direction of Propagation Not Transverse 
to Magnetic Field q«B^O 

In the situation when there is a component of q along 
B, we must go back to (3.7). However, we will assume 
that the condition coĉ >>co is satisfied so that we need 
keep only the a = 0 term in the summation over a. This 
condition will be satisfied except in the region where 
cyclotron resonance would occur. As in (3.8), we can 
expand fkn~fk+q,n and we obtain 

NoM/ Cij \2 co4/i m2 

E fo(^kn~<p) 
2pVs\mVs

2/ q2qzNoh d<p kyhzi 

XJnn2(qy)Kkz—mo)fi/hqz+^qz). (3.27) 

We can readily perform the summations over ky and 
kz and we find 

3N0m/ dj \ 2 <a4fi ho)c d 

4pVs\mVs
2/ (qVF)2qzVFd<p » 

X /o ( (»+ i )*co 0 - f ) , (3.28) 
where 

£= <p-(h2/2m)(m^/hqz~iqz)
2

} (3.29) 

and we have used the fact that 

N0= (l/3Tr2)(mVF/h)K (3.30) 

We can see from (3.28) that we have amplification when 
fx<0 and attenuation when ^ > 0 . We can perform the 
summation over n by using Poisson's summation 

formula.19 The Poisson's summation formula tells us 
that 

E *(*+*)= E (-D r / dx e2irv 

Jo 

x<j>{x). (3.31) 

In the limit of high magnetic fields where %qy
2l2m^c<^X, 

Jnn2(qy)~l, and we have the following summation 
over n: 

EM»+i)««c-9 

r=-oo J 0 

dx e2xirx 

o exp[xhcx)c-£]/kT+1 
(3.32) 

The integration over x can be performed and we find 
that 

E /o((n+i)fcoe-9 
n=0 

g 2irkT oo (-l)»"sin(2irr{/ftcoc) 
£ . (3.33) 

hcoc ho)c r=i sinbi(2Tr2rkT/ho)c) 

Using (3.33) in (3.28), we find for a 

3N0m/Clj\
2 co4/x 

4rPVs\mVsJ (qVF)2qzVF 

4<jr2kT c« (-l)rr cos(2irr£/hb>c)] 
X 1 + 

ha smh(2ir2rkT/htoc) 
(3.34) 

We see that we can get quantum resonances in the 
amplification of sound, whenever %/kuc takes on an 
integer value as long as kT<^hwc. The parameter £ is 
related to the cross-sectional area of the orbit on the 
Fermi surface that is in resonance with the sound wave. 
This orbit is the one that has a drift velocity which 
satisfies the relation 

3-Vd=F. , Vd=Vn+VzB. (3.35) 

As we vary the strength of the magnetic field, we take 
various Landau levels through this cross-sectional area. 
The relation between £ and the cross-sectional area of 
this orbit s is 

^=s/2wm. (3.36) 

These quantum oscillations can only be observed if the 
energy spacing between Landau levels is not smeared 
out by the thermal broadening of these levels. 

When we go to the limit of high quantum numbers we 
can again replace Jnn(qy) by its asymptotic form (3.10) 

19 R. Courant and D. Hilbert, Methods of Mathematical Physics 
(Interscience Publishers, Inc., New York, 1953), Vol. 1, p. 76. 



528 H A R O L D N . S P E C T O R 

and we have field so that the condition 

— Z Jo' 
2nhqy

2-]ll2\ 
J/o((»+*)«co„-0 

/r2xhqv
2~\ll2\ 

\L mcoc J / 

+00 d r00 

= E ( - l ) r — / dxeMr*J0
2 

r=-oo d£. /o 

X/o(*feoc-f), (3.37) 

where we have again used Poisson's summation formula. 
Since dfo/d£ acts at low temperatures like the Dirac 
delta function, we can take the more slowly varying 
Bessel function out of the integral and replace it by its 
value at x— %/hooc. We can then perform the remainder 
of the integration over x as in (3.33). In this limit we 
obtain the following result 

3N0m/ Cij \2 
or/z 

-Jo 
ipV.\mV.y (qVF)%VF 

4ir2kT «, (-l)rr cos(2wri/hae) 
X I -

hwc
 rr=1 sinh(2T2kT/ho)c) 

(-(T) 
:/«coc)-l 
— - . (3.38) 
•0)c) J 

Here we have two different oscillatory terms. The 
oscillations arising from the Bessel function are the 
geometric resonances for the orbits in phase with the 
sound wave. These geometric resonances occur classi
cally and arise from the matching of orbit diameters 
with integral numbers of sound wavelengths. Super
imposed on the geometric resonances, in the case where 
the spacing of Landau levels ho)c is greater than the 
thermal broadening kT, are the de Haas-Schubnikov 
oscillations. The periods of the geometric resonances 
are related to the dimension of the orbit which satisfies 
the resonance condition (3.35), while the periods of the 
de Haas-Schubnikov oscillations are related to the 
cross-sectional areas of these same orbits. 

IV. DISCUSSION 

In our calculations, we have shown that quantum 
oscillations in the sound intensity can occur under con
ditions of amplification. This happens when the drift 
velocity imparted to the conduction electrons in the 
crossed electric and magnetic fields is greater than the 
sound velocity. Under these conditions, the conduction 
electrons can radiate phonons in analogy with the 
Cerenkov radiation of light. Moreover, in the presence 
of the crossed fields, we have found that there is a 
resonant transfer of energy between the sound wave and 
the conduction electrons. This resonant transfer of 
energy occurs when there are electrons that are in phase 
with the sound wave, i.e., when there are electrons that 
have a component of drift velocity in the direction of 
propagation which is equal to the sound velocity Vs. In 
the absence of the dc electric field, this can only occur 
when q has a component in the direction of the magnetic 

Vzg:£=Vs (4.1) 

is satisfied. In the presence of the electric field, the 
resonant transfer of energy can occur for arbitrary 
orientation of q and B. 

We find several different kinds of oscillations arising 
in the amplification of sound. When the direction of 
propagation is not transverse to the dc magnetic field, 
we can have geometric resonances superimposed upon 
de Haas-Schubnikov quantum oscillations. The geo
metric resonances arise from the matching of diameters 
of the cyclotron orbit with the sound wavelength. The 
quantum oscillations arise when the cross section of the 
orbit is an integral multiple of ehB/c. The quantum oscil
lations have an amplitude which is equal in magnitude to 
the semiclassical amplification. Since the diameters and 
the cross-sectional areas are those of the orbits which are 
in resonance with the sound wave, we can obtain in
formation about these quantities for non-extremal orbits 
on the Fermi surface. Thus, by varying the angle be
tween q and B, we can bring different orbits into reso
nance with the sound wave and map out the Fermi 
surface. The fact that this mapping can be done under 
conditions of amplification makes the possibility of their 
study more favorable than it is at present. This resonant 
transfer of energy between the sound wave and the 
conduction electrons can only occur when cor^>l. At 
frequencies high enough to satisfy this condition, the 
attenuation is usually too large to measure anything 
conveniently. Under conditions of amplification, how
ever, this problem would not arise since we would only 
get large amplification factors where the resonances 
occur. 

When the direction of propagation is transverse to 
the magnetic field, we find quantum oscillations of 
small amplitude [of order (tuaj<p)ll2~] superimposed 
upon the semiclassical amplification coefficient. How
ever, in the limit of infinite relaxation time the maxima 
of the amplification become independent of any 
quantum oscillations as long as gF^/co^l. This is 
evidence that the quantum oscillations in the amplifica
tion for q±B arise mainly because of the scattering of 
the electrons by impurities and other scattering 
mechanisms. 

The effects discussed in this paper will only occur in 
semimetals and degenerate semiconductors. In metals, 
the conductivity is too high to obtain the dc electric 
fields necessary to cause VH to exceed Vs. The condi
tions needed for observing these quantum effects would 
require very pure materials at low temperatures. These 
conditions might best be satisfied in semimetals like 
Bi and Sb, where there is already evidence of quantum 
oscillations.20,21 

20 A. P. Korolyuk and T. A. Pruschak, Zh. Eksperim. i Teor. 
Fiz. 41, 1689 (1961) [translation: Soviet Phys.—TETP 14, 1201 
(1962)]. 

21 J. B. Ketterson, Phys. Rev. 129, 18 (1963). 
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APPENDIX 

The purpose of this Appendix is to give a few mathe- ^ r . ^ . 1/2 

matical properties of the matrix elements Jn>n(q)- This 
quantity is denned by (2.13) and can be put in the form 

/ n ! \ 1 / 2 / hq2 \ 

Wl/ \2maJ 

are able to derive the relations 

= ( J L(n+l)ll2Jn',n+l-nVVn>,n-l~], (A3) 

\2mo)J 

( H1 \ 
f n'—n )Jn>n(q) 

dq 

hq2 / hq2 

Xexp Ln
n'~n[ 

4mo)c \2mo)t • ) • 

(Al) 
\2mo) 

2mo)c 

2 v 1/2 

) 
l(n+iy'2Jn,,n+1+nU2Jn>,n-i~], (A4) 

by using the properties of the harmonic oscillator func- w n i c h w e n a v e u s e ( i t o simplify the matrix elements 
tions 4>{x). The formula (Al) is only valid for nf>n. (2.12). We can also obtain the useful sum rules 
Ln

a(x) is an associated Laguerre polynomial. An expres
sion similar to (Al) can be found when n'<n by using °° 
the relations 2Z /n'n2(g) = l , (A5) 

n'=0 

Jn>n(-q) = Jnn>(q)=(-l)n'~nJn>n(q). (A2) «o ^ 2 

22(n'—n)Jn>n2(q) = . (A6) 
Using the properties of the Laguerre polynomials, we »'-o 2wcoc 
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Effects of an Electric Field on Molecular Excitons 
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The influence of an electric field on the second moment A(/) of an exciton wave packet is calculated. The 
following formula is derived: A(/)= (2|(3/^2)[|S4-2Xi(5i+Ci)]/2, where Xi is the (uniform) strength of the 
field along the linear chain molecule and the term Bi-\-Ci depends on the parameters of the system. The 
gradient of the electric field does not contribute to A(/). It is also shown that both the exciton electric dipole 
moment and .Bi+G vanish unless either some states of the units making up the chain (monomers) are parity 
mixtures (as in molecules), or the coupling potential between monomers is not symmetric with respect to 
the parity operators of pairs of adjacent monomers. It must also be required that the monomers have zero 
static dipole moment for the state corresponding to the exciton. 

INTRODUCTION 

IN a previous paper, herein referred to as (A), the 
author1 has derived an expression for the acceleration 

of an exciton wave packet due to an external electric 
field. The acceleration was shown to be proportional to 
the gradient of the electric field, the proportionality con
stant being, therefore, interpretable as the exciton 
electric dipole moment. In the present paper, we extend 
the analysis by (a) investigating the effect of the electric 
field on the rate of spreading of the wave packet, i.e., on 
the second moment of the exciton distribution function, 
and (b) carrying out a brief evaluation of some of the 
derived physical constants of the theory, including the 
exciton dipole moment. All assumptions of the first 
paper are preserved. 

THE SECOND MOMENT OF THE EXCITON 
WAVE PACKET 

We define the second moment by 

A ( 0 = E * ^ / p - W ] 2 = Z a ^ 1 / - W 2 . (i) 

The average position (x) can be trivially calculated from 
Eqs. (17) and (71) of (A). Since the wave packet moves 
with constant acceleration a, and the initial velocity v0 is 
given by 

t>o=-£tfH(*-0&b*(o)MO) 
fii k,i 

1 
= -E( * -Of f *AbAo=0, (2) 

M k,l 
we find 

1 A. Bierman, Phys. Rev. 130, 2266 (1963). (x)^af. 
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